Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Vaccines (Basel) ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543924

RESUMO

The adaptation of egg-derived H7N9 candidate vaccine virus (CVV) in the mammalian cell line is an approach to developing a high-growth virus strain for the mass production of vaccine manufacturing. The adaptive mutations that occur in hemagglutinin (HA) are critical to the activity and potency of the vaccine virus. Previously, we identified a new mutation of A169S in the HA protein of an MDCK-adapted H7N9 vaccine virus (A/Anhui/2013, RG268); however, whether and how this mutation affects vaccine potency remain to be investigated. In this study, we serially passaged RG268 in MDCK cells and found that the HA titer and the TCID50 of the passaged virus RG268-M5 were 4-fold (HA units/50 µL) and 3.5-fold (log10 TCID50/mL) higher than those of the original CVV. By inspecting tandem MS spectra, we identified a new glycosylation site at N167 near the receptor binding site of the HA protein of RG268-M5. Flow cytometry results revealed that RG268-M5 could efficiently infect MDCK cells and initiate viral protein replication as well as that of RG268. Though the new glycosylation site is in the antigenic epitope of viral HA protein, the HI assay result indicated that the antigenicity of RG268-M5 was similar to RG268. Additionally, immunizing mice with RG268-M5 mixed aluminum hydroxide could induce potent antibody responses against the homologous and heterologous H7N9 viruses in vitro whereas the titers were comparable with those from the RG268 group. These results provide in-depth structural information regarding the effects of site-specific glycosylation on virus properties, which have implications for novel avian influenza vaccine development.

4.
Vaccine ; 41(21): 3337-3346, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37085450

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Animais , Camundongos , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Dipeptidil Peptidase 4 , Imunidade Celular , Camundongos Transgênicos , Adjuvantes Imunológicos , Proteínas Recombinantes , Vacinas de Subunidades , Glicoproteína da Espícula de Coronavírus
5.
Viruses ; 14(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36146744

RESUMO

Human infections with avian-origin H7N9 influenza A viruses were first reported in China, and an approximately 38% human mortality rate was described across six waves from February 2013 to September 2018. Vaccination is one of the most cost-effective ways to reduce morbidity and mortality during influenza epidemics and pandemics. Egg-based platforms for the production of influenza vaccines are labor-intensive and unable to meet the surging demand during pandemics. Therefore, cell culture-based technology is becoming the alternative strategy for producing influenza vaccines. The current influenza H7N9 vaccine virus (NIBRG-268), a reassortant virus from A/Anhui/1/2013 (H7N9) and egg-adapted A/PR/8/34 (H1N1) viruses, could grow efficiently in embryonated eggs but not mammalian cells. Moreover, a freezing-dry formulation of influenza H7N9 vaccines with long-term stability will be desirable for pandemic preparedness, as the occurrence of influenza H7N9 pandemics is not predictable. In this study, we adapted a serum-free anchorage-independent suspension Madin-Darby Canine Kidney (MDCK) cell line for producing influenza H7N9 vaccines and compared the biochemical characteristics and immunogenicity of three influenza H7N9 vaccine antigens produced using the suspension MDCK cell-based platform without freeze-drying (S-WO-H7N9), the suspension MDCK cell-based platform with freeze-drying (S-W-H7N9) or the egg-based platform with freeze-drying (E-W-H7N9). We demonstrated these three vaccine antigens have comparable biochemical characteristics. In addition, these three vaccine antigens induced robust and comparable neutralizing antibody (NT; geometric mean between 1016 and 4064) and hemagglutinin-inhibition antibody (HI; geometric mean between 640 and 1613) titers in mice. In conclusion, the serum-free suspension MDCK cell-derived freeze-dried influenza H7N9 vaccine is highly immunogenic in mice, and clinical development is warranted.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Animais , Anticorpos Neutralizantes , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Camundongos
6.
J Hip Preserv Surg ; 8(4): 354-359, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35505810

RESUMO

The corona mortis (CM) is a vascular connection between the obturator and external iliac or internal epigastric vessels that has historically been identified as a source of hemorrhage in pelvic surgery. However, its frequency, location, proximity to the osteotomies performed, vascular contributions and impact on blood loss in patients undergoing periacetabular osteotomy (PAO) are unknown. We sought to identify the frequency, origin, location relative to osteotomies performed during surgery and impact on blood loss of the CM. Preoperative magnetic resonance imaging (MRI) of the hips of 28 adolescent patients (56 hips) undergoing PAO was retrospectively reviewed for the presence of a CM. When identifiable, the size, nature (arterial or venous), orientation, position relative to the iliopectineal eminence (IPE) and associated estimated blood loss (EBL) were recorded. 75% (21/28) of patients possessed an identifiable, ipsilateral CM to the site of PAO, 90% of which were venous and 10% arterial. The vessel was typically 8.3 ± 3.8 mm medial and 11.1 ± 5.3 mm caudal from the anterosuperomedial edge of the IPE. There was no significant difference in the amount of EBL (519 ± 260 versus 694 ± 369 ml) or need for post-op transfusions (1/21 versus 0/7) between patients who possessed a CM and those who did not, respectively (P = 0.21). CM was more prevalent in this study than previously reported. However, the presence of an ipsilateral CM was not associated with an increase in EBL or transfusion during routine PAO surgery using modern surgical techniques.

7.
Vaccines (Basel) ; 8(4)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113866

RESUMO

The embryonated egg-based platform currently produces the majority of seasonal influenza vaccines by employing a well-developed master donor virus (MDV, A/PR/8/34 (PR8)) to generate high-growth reassortants (HGRs) for A/H1N1 and A/H3N2 subtypes. Although the egg-based platform can supply enough seasonal influenza vaccines, it cannot meet surging demands during influenza pandemics. Therefore, multi-purpose platforms are desirable for pandemic preparedness. The Vero cell-based production platform is widely used for human vaccines and could be a potential multi-purpose platform for pandemic influenza vaccines. However, many wild-type and egg-derived influenza viruses cannot grow efficiently in Vero cells. Therefore, it is critical to develop Vero cell-derived high-growth MDVs for pandemic preparedness. In this study, we evaluated two in-house MDVs (Vero-15 and VB5) and two external MDVs (PR8 and PR8-HY) to generate Vero cell-derived HGRs for five avian influenza viruses (AIVs) with pandemic potentials (H5N1 clade 2.3.4, H5N1 clade 2.3.2.1, American-lineage H5N2, H7N9 first wave and H7N9 fifth wave). Overall, no single MDV could generate HGRs for all five AIVs, but this goal could be achieved by employing two in-house MDVs (vB5 and Vero-15). In immunization studies, mice received two doses of Vero cell-derived inactivated H5N1 and H7N9 whole virus antigens adjuvanted with alum and developed robust antibody responses.

8.
J Biomed Sci ; 27(1): 47, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241276

RESUMO

BACKGROUND: Influenza vaccine manufacturers traditionally use egg-derived candidate vaccine viruses (CVVs) to produce high-yield influenza viruses for seasonal or pandemic vaccines; however, these egg-derived CVVs need an adaptation process for the virus to grow in mammalian cells. The low yields of cell-based manufacturing systems using egg-derived CVVs remain an unsolved issue. This study aimed to develop high-growth cell-derived CVVs for MDCK cell-based vaccine manufacturing platforms. METHODS: Four H7N9 CVVs were generated in characterized Vero and adherent MDCK (aMDCK) cells. Furthermore, reassortant viruses were amplified in adherent MDCK (aMDCK) cells with certification, and their growth characteristics were detected in aMDCK cells and new suspension MDCK (sMDCK) cells. Finally, the plaque-forming ability, biosafety, and immunogenicity of H7N9 reassortant viruses were evaluated. RESULTS: The HA titers of these CVVs produced in proprietary suspension MDCK (sMDCK) cells and chicken embryos were 2- to 8-fold higher than those in aMDCK cells. All H7N9 CVVs showed attenuated characteristics by trypsin-dependent plaque assay and chicken embryo lethality test. The alum-adjuvanted NHRI-RG5 (derived from the fifth wave H7N9 virus A/Guangdong/SP440/2017) vaccine had the highest immunogenicity and cross-reactivity among the four H7N9 CVVs. Finally, we found that AddaVax adjuvant improved the cross-reactivity of low pathogenic H7N9 virus against highly pathogenic H7N9 viruses. CONCLUSIONS: Our study indicates that cell-derived H7N9 CVVs possessed high growth rate in new sMDCK cells and low pathogenicity in chicken embryo, and that CVVs generated by this platform are also suitable for both cell- and egg-based prepandemic vaccine production.


Assuntos
Imunização , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Vírus Reordenados/imunologia , Animais , Embrião de Galinha , Cães , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Vírus Reordenados/genética
9.
Hum Vaccin Immunother ; 16(9): 2245-2251, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118516

RESUMO

Outbreaks of infection by novel avian influenza virus strains in humans cause public health issues worldwide, and the development of vaccines against such novel strains is the most effective method for the prevention of these virus outbreaks. All types of vaccines must be tested for potency before use; thus, quantitative potency assays are needed for influenza vaccines. The single radial immunodiffusion (SRID) assay is considered the gold standard for quantification of influenza virus antigens, and the SRID reference reagents are essential for the determination of vaccine potency. However, it remains debatable whether reference reagents derived from egg-based vaccine platforms can be used to precisely quantify non-egg-derived vaccines; thus, influenza vaccine production using cell-based platforms has attracted increasing attention. To evaluate the utility of reference reagents derived from a cell-based influenza vaccine platform, we prepared cell-based reference reagents from MDCK cell-grown viruses and compared them with egg-derived reference reagents. A primary liquid standard (PLS) was purified from cell-derived candidate influenza vaccine viruses, and hemagglutinin (HA) antigen content was determined by a densitometric method. The produced PLS could be stored at 4°C for more than 10 months. We also established a simple HA protein purification method for goat antiserum preparation, and the performance of the resulting antiserum was compared to that of standard reagents obtained using different production platforms. The results of this study indicate that these reference reagents can be used for both cell-based and egg-based production platforms and that the differences between these two types of platforms are negligible.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Indicadores e Reagentes , Potência de Vacina
10.
J Biol Eng ; 13: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666806

RESUMO

BACKGROUND: Influenza viruses cause hundreds of thousands of respiratory diseases worldwide each year, and vaccination is considered the most effective approach for preventing influenza annual epidemics or pandemics. Since 1950, chicken embryonated eggs have been used as the main method for producing seasonal influenza vaccines. However, this platform has the main drawback of a lack of scale-up flexibility, and thus, egg-based vaccine manufacturers cannot supply sufficient doses within a short period for use for pandemic prevention. As a result, strategies for reducing the manufacturing time and increasing production capacity are urgently needed. Non-virion vaccine methods have been considered an alternative strategy against an influenza pandemic, and the purpose of maintaining an immunogenic capsule structure with infectious properties appears to be met by the virus-like particle (VLP) platform. RESULTS: An influenza H7N9-TW VLP production platform using insect cells, which included the expression of hemagglutinin (HA), NA, and M1 proteins, was established. To scale up H7N9-TW VLP production, several culture conditions were optimized to obtain a higher production yield. A high level of dissolved oxygen (DO) could be critical to H7N9-TW VLP production. If the DO was maintained at a high level, the HA titer obtained in the spinner flask system with ventilation was similar to that obtained in a shake flask. In this study, the HA titer in a 5-L bioreactor with a well-controlled DO level was substantially improved by 128-fold (from 4 HA units (HAU)/50 µL to 512 HAU/50 µL). CONCLUSIONS: In this study, a multigene expression platform and an effective upstream process were developed. Notably, a high H7N9-TW VLP yield was achieved using a two-step production strategy while a high DO level was maintained. The upstream process, which resulted in high VLP titers, could be further used for large-scale influenza VLP vaccine production.

11.
Vaccine ; 37(47): 7117-7122, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31383484

RESUMO

In recent years, cell-based influenza vaccines have gained a great interest over the egg-based vaccines. Several inactivated H7N9 vaccines have been evaluated in clinical trials, including whole-virion vaccines, split vaccines and subunit vaccines. Recently, we developed a new suspension MDCK (sMDCK) cell line for influenza viruses production. However, the properties of purified antigen from sMDCK cells remain unclear. In this study, the stability of influenza H7N9 vaccine bulk derived from sMDCK cells was investigated, and the data were compared with the vaccine antigen derived from our characterized adhesion MDCK (aMDCK) cells in serum-free medium. The influenza H7N9 bulks derived from sMDCK and aMDCK cells were stored at 2-8 °C for different periods of time, and a number of parameters selected to monitor the H7N9 vaccine antigen stability were evaluated at each interval (1, 3 and 12 months). The monitored parameters included virus morphology, hemagglutinin (HA) activity, HA concentration, antigenicity, and immunogenicity. The sMDCK-derived H7N9 bulk showed similar morphology to that of the aMDCK-derived H7N9 bulk, and there were no obvious changes after the extended storage periods. Furthermore, the HA titer, HA concentration, and antigenicity of sMDCK-derived H7N9 bulk were stable after 28 months of storage. Finally, the results of hemagglutination inhibition and neutralization tests showed that sMDCK- and aMDCK-derived H7N9 vaccines had comparable immunogenicity. These results indicated that sMDCK-derived H7N9 bulk has good stability compared to that of aMDCK-derived H7N9 bulk. Thus, the newly developed suspension MDCK cell line shows a great alternative for manufacturing cell-based influenza vaccines.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Cães , Testes de Inibição da Hemaglutinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas/imunologia , Células Madin Darby de Rim Canino , Testes de Neutralização/métodos , Infecções por Orthomyxoviridae/imunologia , Potência de Vacina
12.
PLoS One ; 14(8): e0220803, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404117

RESUMO

Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 µg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.


Assuntos
Reatores Biológicos , Equipamentos Descartáveis , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Vacinas contra Influenza/biossíntese , Animais , Chlorocebus aethiops , Cães , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino/virologia , Pandemias , Células Vero/virologia
13.
Viruses ; 11(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212631

RESUMO

Novel low-pathogenic avian influenza (LPAI) H5N2 viruses hit poultry farms in Taiwan in 2003, and evolved into highly pathogenic avian influenza (HPAI) viruses in 2010. These viruses are reassortant viruses containing HA and NA genes from American-lineage H5N2 and six internal genes from local H6N1 viruses. According to a serological survey, the Taiwan H5N2 viruses can cause asymptomatic infections in poultry workers. Therefore, a development of influenza H5N2 vaccines is desirable for pandemic preparation. In this study, we employed reverse genetics to generate a vaccine virus having HA and NA genes from A/Chicken/CY/A2628/2012 (E7, LPAI) and six internal genes from a Vero cell-adapted high-growth H5N1 vaccine virus (Vero-15). The reassortant H5N2 vaccine virus, E7-V15, presented high-growth efficiency in Vero cells (512 HAU, 107.6 TCID50/mL), and passed all tests for qualification of candidate vaccine viruses. In ferret immunization, two doses of inactivated whole virus antigens (3 µg of HA protein) adjuvanted with alum could induce robust antibody response (HI titre 113.14). In conclusion, we have established reverse genetics to generate a qualified reassortant H5N2 vaccine virus for further development.


Assuntos
Vírus da Influenza A Subtipo H5N2/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/isolamento & purificação , Influenza Humana/prevenção & controle , Vírus Reordenados/imunologia , Animais , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H5N2/genética , Vírus da Influenza A Subtipo H5N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Neuraminidase/genética , Neuraminidase/imunologia , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus Reordenados/isolamento & purificação , Genética Reversa , Taiwan , Resultado do Tratamento , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-30428430

RESUMO

Determining the precursor/product ion pair and optimal collision energy are the critical steps for developing a multiple reaction monitoring (MRM) assay using triple quadruple mass spectrometer for protein quantitation. In this study, a platform consisting of stable isotope dimethyl labeling coupled with triple-quadruple mass spectrometer was used to quantify the protein components of the influenza vaccines. Dimethyl labeling of both the peptide N-termini and the ϵ-amino group of lysine residues was achieved by reductive amination using formaldehyde and sodium cyanoborohydrate. Dimethylated peptides are known to exhibit dominant a1 ions under gas phase fragmentation in a mass spectrometer. These a1 ions can be predicted from the peptide N-terminal amino acids, and their signals do not vary significantly across a wide range of collision energies, which facilitates the determination of MRM transition settings for multiple protein targets. The intrinsic a1 ions provide sensitivity for acquiring MRM peaks that is superior to that of the typical b/y ions used for native peptides, and they also provided good linearity (R2 ≥ 0.99) at the detected concentration range for each peptide. These features allow for the simultaneous quantification of hemagglutinin and neuraminidase in vaccines derived from either embryo eggs or cell cultivation. Moreover, the low abundant ovalbumin residue originated from the manufacturing process can also be determined. The results demonstrate that the stable isotope dimethyl labeling coupled with MRM Mass spectrometry screening of a1 ions (i.e., SIDa-MS) can be used as a high-throughput platform for multiple protein quantification of vaccine products.


Assuntos
Antígenos Virais/análise , Vacinas contra Influenza/análise , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Antígenos Virais/química , Vacinas contra Influenza/química , Limite de Detecção , Modelos Lineares , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Reprodutibilidade dos Testes , Proteínas Virais/análise , Proteínas Virais/química
15.
Am J Surg ; 216(5): 949-954, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29631908

RESUMO

BACKGROUND: Valid and user-friendly prediction models for conversion to open cholecystectomy allow for proper planning prior to surgery. The Cairns Prediction Model (CPM) has been in use clinically in the original study site for the past three years, but has not been tested at other sites. METHODS: A retrospective, single-centred study collected ultrasonic measurements and clinical variables alongside with conversion status from consecutive patients who underwent laparoscopic cholecystectomy from 2013 to 2016 in The Townsville Hospital, North Queensland, Australia. An area under the curve (AUC) was calculated to externally validate of the CPM. RESULTS: Conversion was necessary in 43 (4.2%) out of 1035 patients. External validation showed an area under the curve of 0.87 (95% CI 0.82-0.93, p = 1.1 × 10-14). CONCLUSIONS: In comparison with most previously published models, which have an AUC of approximately 0.80 or less, the CPM has the highest AUC of all published prediction models both for internal and external validation.


Assuntos
Colecistectomia Laparoscópica , Conversão para Cirurgia Aberta , Doenças da Vesícula Biliar/cirurgia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
16.
Vaccine ; 36(22): 3146-3152, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28342667

RESUMO

Since newly emerging influenza viruses with pandemic potentials occurred in recent years, the demand for producing pandemic influenza vaccines for human use is high. For the development of a quick and efficient vaccine production, we proposed an efficient purification platform from the harvest to the purified bulk for the cell-based influenza vaccine production. This platform based on flow-through chromatography and filtration steps and the process only involves a few purification steps, including depth filtration, inactivation by formaldehyde, microfiltration, ultrafiltration, anion-exchange and ligand-core chromatography and sterile filtration. In addition, in the proposed chromatography steps, no virus capture steps were employed, and the purification results were not affected by the virus strain variation, host cells and culturing systems. The results from different virus strains which produced by Vero or MDCK cells in different culturing systems also obtained 33-46% HA recovery yields by this platform. The overall removal rates of the protein and DNA concentration in the purified bulk were over 96.1% and 99.7%, respectively. The low residual cellular DNA concentrations were obtained ranged from 30 to 130pg per human dose (15µg/dose). All influenza H5N1 purified bulks met the regulatory requirements for human vaccine use.


Assuntos
Cromatografia/métodos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais , Chlorocebus aethiops , Cães , Filtração , Vacinas contra Influenza , Células Madin Darby de Rim Canino , Microscopia Eletrônica , Células Vero
17.
Vaccine ; 36(22): 3134-3139, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28274636

RESUMO

Hand, foot and mouth diseases (HFMD) are mainly caused by Enterovirus A71 (EV-A71) infections. Clinical trials in Asia conducted with formalin-inactivated EV-A71 vaccine candidates produced from serum-free Vero cell culture using either roller bottle or cell factory technology, are found to be safe and highly efficacious. To increase vaccine yields and reduce the production costs, the bioprocess improvement for EV-A71 vaccine manufacturing is currently being investigated. The parameters that could affect and enhance the production yields of EV-A71 virus growth in the microcarrier bioreactor were investigated. The medium replacement culture strategy included a multi-harvested semi-batch process and perfusion technology and was found to increase the production yields more than 7-14 folds. Based on the western blot and cryo-EM analyses of the EV-A71 virus particles produced from either the multi-harvested semi-batch (MHSBC) or perfusion cultures were found to be similar to those virus particles obtained from the single batch culture. Mouse immunogenicity studies indicate that the EV-A71 vaccine candidates produced from the perfusion culture have similar potency to those obtained from single batch bioprocess. The physical structures of the EV-A71 particles revealed by the cryo-EM analysis were found to be spherical capsid particles. These results provide feasible technical bioprocesses for increasing virus yields and the scale up of EV-A71 vaccine manufacturing using the bioreactor cell culture methods.


Assuntos
Reatores Biológicos/virologia , Técnicas de Cultura de Células/métodos , Enterovirus Humano A/crescimento & desenvolvimento , Vacinas Virais/biossíntese , Cultura de Vírus/métodos , Animais , Técnicas de Cultura Celular por Lotes , Chlorocebus aethiops , Imunogenicidade da Vacina , Camundongos , Testes de Neutralização , Vacinas de Produtos Inativados/biossíntese , Células Vero
18.
Am J Surg ; 214(5): 920-930, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28739121

RESUMO

BACKGROUND: The study aims to evaluate the methodological quality of publications relating to predicting the need of conversion from laparoscopic to open cholecystectomy and to describe identified prognostic factors. METHOD: Only English full-text articles with their own unique observations from more than 300 patients were included. Only data using multivariate analysis of risk factors were selected. Quality assessment criteria stratifying the risk of bias were constructed and applied. RESULTS: The methodological quality of the studies were mostly heterogeneous. Most studies performed well in half of the quality criteria and considered similar risk factors, such as male gender and old age, as significant. Several studies developed prediction models for risk of conversion. Independent risk factors appeared to have additive effects. CONCLUSION: A detailed critical review of studies of prediction models and risk stratification for conversion from laparoscopic to open cholecystectomy is presented. One study is identified of high quality with a potential to be used in clinical practice, and external validation of this model is recommended.


Assuntos
Colecistectomia Laparoscópica , Conversão para Cirurgia Aberta/estatística & dados numéricos , Humanos , Fatores de Risco
19.
Sci Rep ; 6: 34813, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708390

RESUMO

Coleoptera (beetles) is a massively successful order of insects, distinguished by their evolutionarily modified forewings called elytra. These structures are often presumed to have been a major driving force for the successful radiation of this taxon, by providing beetles with protection against a variety of harsh environmental factors. However, few studies have directly demonstrated the functional significance of the elytra against diverse environmental challenges. Here, we sought to empirically test the function of the elytra using Tribolium castaneum (the red flour beetle) as a model. We tested four categories of stress on the beetles: physical damage to hindwings, predation, desiccation, and cold shock. We found that, in all categories, the presence of elytra conferred a significant advantage compared to those beetles with their elytra experimentally removed. This work provides compelling quantitative evidence supporting the importance of beetle forewings in tolerating a variety of environmental stresses, and gives insight into how the evolution of elytra have facilitated the remarkable success of beetle radiation.


Assuntos
Tribolium/fisiologia , Asas de Animais/fisiologia , Animais , Resposta ao Choque Frio/fisiologia , Feminino , Masculino , Comportamento Predatório , Aranhas , Asas de Animais/anatomia & histologia , Asas de Animais/cirurgia
20.
PLoS One ; 10(3): e0120793, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799397

RESUMO

Avian-origin influenza A (H7N9) viruses emerged as human pathogens in China in early 2013 and have killed >100 persons. Influenza vaccines are mainly manufactured using egg-based technology which could not meet the surging demand during influenza pandemics. In this study, we evaluated cell-based influenza H7N9 vaccines in ferrets. An egg-derived influenza H7N9 reassortant vaccine virus was adapted in MDCK cells. Influenza H7N9 whole virus vaccine antigen was manufactured using a microcarrier-based culture system. Immunogenicity and protection of the vaccine candidates with three different formulations (300 µg aluminum hydroxide, 1.5 µg HA, and 1.5 µg HA plus 300 µg aluminum hydroxide) were evaluated in ferrets. In ferrets receiving two doses of vaccination, geometric mean titers of hemagglutination (HA) inhibition and neutralizing antibodies were <10 and <40 for the control group (adjuvant only), 17 and 80 for the unadjuvanted (HA only) group, and 190 and 640 for the adjuvanted group (HA plus adjuvant), respectively. After challenge with wild-type influenza H7N9 viruses, virus titers in respiratory tracts of the adjuvanted group were significantly lower than that in the control, and unadjuvanted groups. MDCK cell-derived influenza H7N9 whole virus vaccine candidate is immunogenic and protective in ferrets and clinical development is highly warranted.


Assuntos
Furões , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Adaptação Biológica , Animais , Antígenos Virais/imunologia , Cães , Feminino , Imunização , Subtipo H7N9 do Vírus da Influenza A/ultraestrutura , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Vírus Reordenados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...